Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med ; 17(6): 1096-1116, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38102402

RESUMO

Confronted with the Coronavirus disease 2019 (COVID-19) pandemic, China has become an asset in tackling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and mutation, with several innovative platforms, which provides various technical means in this persisting combat. Derived from collaborated researches, vaccines based on the spike protein of SARS-CoV-2 or inactivated whole virus are a cornerstone of the public health response to COVID-19. Herein, we outline representative vaccines in multiple routes, while the merits and plights of the existing vaccine strategies are also summarized. Likewise, new technologies may provide more potent or broader immunity and will contribute to fight against hypermutated SARS-CoV-2 variants. All in all, with the ultimate aim of delivering robust and durable protection that is resilient to emerging infectious disease, alongside the traditional routes, the discovery of innovative approach to developing effective vaccines based on virus properties remains our top priority.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , China/epidemiologia , Desenvolvimento de Vacinas
2.
Innovation (Camb) ; 4(4): 100451, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37342672

RESUMO

Aluminum (alum) adjuvant is the most extensively used protein subunit vaccine adjuvant, and its effectiveness and safety have been widely recognized. The surface charge of the antigen determines its electrostatic adsorption to alum adjuvant, which directly affects the immune efficacy of the protein vaccine. In our study, we precisely modified its surface charge by inserting charged amino acids into the flexible region of the SARS-CoV-2 receptor-binding domain (RBD), achieving electrostatic adsorption and a site-specific anchor between the immunogen and alum adjuvant. This innovative strategy extended the bioavailability of the RBD and directionally displayed the neutralizing epitopes, thereby significantly enhancing humoral and cellular immunity. Furthermore, the required dose of antigen and alum adjuvant was greatly reduced, which improved the safety and accessibility of the protein subunit vaccine. On this basis, the wide applicability of this novel strategy to a series of representative pathogen antigens such as SARS-RBD, MERS-RBD, Mpox-M1, MenB-fHbp, and Tularemia-Tul4 was further confirmed. Charge modification of antigens provides a straightforward approach for antigenicity optimization of alum-adjuvanted vaccines, which has great potential to be adopted as a global defense against infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...